
A Rational Design for a Weighted Finite-State
Transducer Library

Mehryar Mohri, Fernando Pereira, and Michael Riley

AT&T Labs - - Research
180 Park Avenue, Florham Park, NJ 07932-0971

1 O v e r v i e w

We describe the design principles and main algorithms for an object-oriented
library for weighted finite-state transducers, which are finite automata in which
each transition has an output and a weight as well as the more familiar input.
The main goal of the library is to provide algorithms and representations for
all the symbolic processing components (language models, dictionaries, acoustic
realization rules, word lattices) in large-vocabulary speech recognition systems.
This goal leads to several requirements: generality, to support the representa-
tion and use of the various information sources in speech recognition; modularity,
to allow rapid experimentation with different representations of speech recogni-
tion tasks; and efficiency, to support competitive large-vocabulary recognition.
Rational power series provide the theoretical foundation for the library by giv-
ing the semantics for the objects and operations in the library and by creat-
ing the opportunity for optimizations (on-demand composition, determinization
and minimization) that are not available in more "ad hoc" speech recognition
frameworks. The generality of the library has made it also valuable in other
language-processing applications, such as word segmentation for Chinese text
[25].

1.1 Design Rationale

Current speech-recognition systems rely on a variety of probabilistic finite-state
models, for instance n-gram language models [21], multiple-pronunciation dictio-
naries [11], and context-dependent acoustic models [10]. However, most speech
recognizers do not take advantage of the shared properties of the information
sources they use. Instead, they rely on special-purpose algorithms for specific
representations. That means that the recognizer has to be rewritten if repre-
sentations are changed for a new application or for increased accuracy or per-
formance. Experiments with different representations are therefore difficult, as
they require changing or even completely replacing fairly intricate recognition
programs. This situation is not too different from that in programming-language
parsing before lex and yacc [2]. Furthermore, specialized representations and
algorithms preclude certain global optimizations based on the general proper-
ties of finite-state models. Again, the situation is similar to the lack of general

145

methods in programming-language parsing before the development of the the-
ory of deterministic context-free languages and of general grammar optimization
techniques based on it.

In some other areas of language processing, especially dictionaries, morphol-
ogy and local parsing, finite-state techniques have been used with great success
[7,13]. Complex finite-state mappings between strings can be represented with
regular expressions over elementary transductions (input-output mappings) to-
gether with relational composition of transductions. Convenient notation extend-
ing regular expressions with composition and useful derived forms have also been
developed [8]. It might thus be thought that those finite-state tools would apply
directly to the problem of specifying and combining the multiple information
sources used in a speech recognizer. However, in speech recognition it is essen-
tial that alternative ways of generating or transforming a string be weighted by
the likelihood of that generation or transformation. That is, instead of languages
and transductions we have to work with weighted languages and weighted trans-
ductions, and thus with finite automata with weighted transitions. 1 Weighted
languages are just formal power series over appropriate semirings, and weighted
transductions can be interpreted in a similar way [23, 6, 9, 3]. We were thus led to
develop a library supporting the representation and use of weighted finite-state
representations of speech-recognition models. Using the library, each weighted
language or transduction is represented as an appropriate weighted acceptor or
transducer, and model combination is done by calls to library functions.

The adjective "rational" in the title of this paper is used ambiguously to
refer both to the use of the theory of rationM power series as a foundation for
the library, and to the design approach, in which each object and function has
a well-defined mathematical semantics. At the level of the rational operations
and composition, the library is compositional - - the meaning as a language or
transduction of the result of a function application depends only on the mean-
ings of the function's arguments. Other functions in the library depend on or
manipulate representations - - weighted automata - - but they are compositional
at the automata level, in that they operate uniformly on any automata objects
providing suitable accessor and mutator methods.

Algorithms on weighted automata have strong similarities with their better-
known unweighted counterparts, but the proper treatment of weights introduces
various subtleties that we shall describe later. Furthermore, the size of symbol
sets and automata arising in large-vocabulary recognition require careful imple-
mentation techniques even for standard algorithms. For example, iterating over
the symbol set in the standard DFA minimization algorithm [1] is impractical
for sparse DFAs if the symbol set is large, as is the case in language models for
large-vocabulary recognition.

7 Weighted acceptors and transducers have also been used in image processing [5].

146

1.2 Coverage

The library operates on weighted transducers; weighted acceptors are represented
as restrictions of the identity transducer to the support of the acceptor. In our
chosen representation, weighted automata have a single initial state; whether
a state is accepting or not is determined by the state's accepting weight. The
library includes:

Ra t iona l opera t ions : union, concatenation, Kleene closure, reversal, inversion
and projection;

Compos i t ion : transducer composition [17], and acceptor intersection, as well
as taking the difference between a weighted acceptor and an unweighted
DFA;

Equivalence t r ans format ions : e-elimination, determinization [14,15] and
minimization for unweighted (both the general case [1] and the more efficient
acyclic case [20]) and weighted acceptors and transducers [12, 15], removal
of inaccessible states and transitions;

Search: best path, n-best paths, pruning (remove all states and transitions
that occur only on paths of weight greater by a given threshold than the
best path);

R e p r e s e n t a t i o n and s torage managemen t : create and convert among au-
tomata representations with different performance tradeoffs; also, as we will
discuss later, many of the library functions can have their effects delayed
for on-demand execution, and functions are provided to cache and force de-
layed objects, inspired by" similar functions for lazy evaluation in functional
programming languages.

In addition, a comprehensive set of support functions is provided to manipulate
the internal representations of automata (for instance, topological sorting), for
converting between internal and external representations, including graphical
ones, and for accessing and mutating the components of an automaton (states,
transitions, initial state and accepting weights).

For convenient experimentation, each of the library's main functions has
a Unix shell-level counterpart that operates between external automata repre-
sentations, allowing the expression of complex operations on automata as shell
pipelines. The example that follows is presented in terms of those commands for
simplicity.

1.3 Simple Example: Alignment

As a simple example of the use of the library, we show how to find the best
alignment between two strings using a weighted edit distance, which can be ap-
plied for instance to finding the best alignment between the dictionary phonetic
transcription of a word string and the acoustic (phone) realization of the same
word string. Figure 2 shows a domain-dependent table of insertion, deletion
and substitution weights between phonemes and phones. In a real application,
those weights would be derived automatically from aligned examples using a

147

Baseform Phone Word

P
e r

P

a x

S

a e

n

d
r

ih
S

P

eh
k
t

pr purpose
er
p d
pr
ix
s

eh and
n

r respect
ix
S

pcl
pr
eh
kcl
tr

F ig . i . String Alignment

Baseform Phone i Weights Type
ai bi w(ai,b~)i
ae eh 1 substitution
d e 2 deletion
e pr 1 insertion

Fig . 2. Weighted Edit Distance

148

suitable machine-learning method [11,22]. The minimum edit distance between
two strings can be simply defined by the recurrences

d(a°,b °) = 0

d~(ai, b j) = d(ai-1, b j - l) + w(ai,bj) (substitution)
dd(a i ,bJ)= d(a~-l,b j) + w(ai,e) (deletion)
di(ai,b j) = d(ai ,b j - l) + w(e, bj) (insertion)

d(a i, bJ) = min{d~(a i, b j) + dd(a i, bJ) + di(a i, bJ)}

AJ~a

T . m

@ ae:eh/1 (~ n : n / 0 @ d:eps/3 . @

c.f~l

Fig. 3. Alignment Automata

The possible one symbol edits (insertion, deletion or substitution) and their
weights can be readily represented by a one-state weighted transducer. If the
transducer is in file T . f s t and the strings to be aligned are represented by
acceptors 1. f s a and B. fsa, the best alignment is computed simply by the shell
command

fsmcompose A.fsa T.fst B.fsa I fsmbestpath >C.fst

Abbreviated examples of the inputs and outputs to this command are shown in
Figure 3.

The correctness of this implementation of minimum edit distance alignment
depends on the use of suitable weight combination rules in automata composi-
tion, specifically those of the tropical semiring [24], which will be discussed more
fully in the next section.

Alignment by transduetion can be readily extended to situations in which
edits involve longer strings or are context-dependent, as those shown in Figure
4. In such cases, states in the edit transducer encode appropriate context con-
ditions. Furthermore, a set of weighted edit rules like those in Figure 4 can be
directly compiled into an appropriate weighted transducer [18].

149

Baseform(s)! Phone(s) Weights Type
ai bj w(a . bj)
p pcl pr 1 expansion

eh m em 3 contraction
r eh ax r 2 transposition

t / V r V dx ~ 0 context-dependency

Fig. 4. Generalized Weighted Edit Distance

2 Weighted Algorithms

Although algorithms for weighted automata are closely related to their better-
known unweighted counterparts, they differ in crucial details.

One of the important features of our finite-state library is that most of its
algorithms operate on general weighted au tomata and transducers. We shall out-
line later the mathematical foundation for weighted automata, and how it allows
us to write general algorithms that are independent of the underlying algebra.
For the moment, we note that weights may not be numbers, but they may in-
stead be strings, sets, or even regular expressions. In each case, the additive
and multiplicative operations • and ® on weights need to be chosen to form
a semiring: • must be commutative with a neutral element 0, ® must have a
neutral element 1, ® must distribute on the left and on the right with respect
to G, and 0 ® a = a ® 0 = 0. For some algorithms the semiring must be commu-
tative, meaning that @ is commutative. Finally, some algorithms require closed
semirings, in which infinite addition is defined and behaves as finite addition
with respect to multiplication.

Shortest-paths algorithms play an essential role in applications, being used
to find the "best" solution in the set of possible solutions represented by an
automaton (for instance, the best string alignment or the best recognition hy-
pothesis), as we saw in the alignment example given earlier. Since the general
framework for solving all pairs shortest-paths problems - - closed semirings - - is
compatible with the abstract notion of weights we use, we were able to include
an efficient version of that generic algorithm [1,4] in our library. Using the same
algorithm and code, we can provide the all-pairs shortest distances when weights
are real numbers representing, for example, probabilities, but also when they are
strings or regular expressions. This last case is useful to generate efficiently a
regular expression equivalent to a given automaton.

In a similar way we defined a general framework for single-source shortest-
paths algorithms based on semirings that leads to a generic algorithm [16]. This
generic algorithm computes the single-source shortest distance when weights
are numbers, strings, or subsets of a set. These different cases are useful in
computing minimal deterministic weighted automata . In most speech-processing
applications, the appropriate weight algebra is the tropical semiring. Weights are
positive real numbers, representing negative logarithms of probabilities. Weights

150

gr~e~4

Fig. 5. Weighted automaton and its e-removal

along a path are added; when several paths correspond to the same string, the
weight of the string is the minimum of the weights of those paths.

2.1 E x a m p l e : e R e m o v a l

2 3//o 4- M~I,v_{~ }
3 G~ 4- CLOSURE(Me)
4 for p 4- 1 to IVt
5 do for each te E TransG~ [iv]
6 do for each ti E TransMi [Next(t~)] A l(ti) • e
7 do to 4- FINDTRANS(/(ti), Next(t/), TransMo [p])

Fig. 6. Pseudocode of the general e-removal algorithm.

Figure 6 shows the pseudocode of a generic e-removal algorithm for weighted
automata. Given a weighted automaton Mi, the algorithm returns an equiva-
lent weighted automaton Mo without e-transitions. TransM[s] denotes the set
of transitions leaving state s in automaton M~ Next(t) denotes the destination
state of transition t, l(t) denotes its label, and A(t) its weight. Lines 1 and 2
extract from M~ the subautomaton Me containing all e transitions in Mi and
the subautomaton Mo containing all the non-e transitions. Line 3 applies the
general all-pairs shortest distance algorithm CLOSURE to Mr to derive the e-
closure Gc. The nested loops starting in lines 4, 5 and 6 iterate over all pairs of
an e-closure transition t~ and a non-e transition ¢i such that the destination of
te is the source of t~. Line 7 looks in Mo for a transition to with label I(ti) from
tE's source from ti 's destination if it exists, or creates a new one with weight 0
if it does not. This transition is the result of extending ti "backwards" with the
Mi e-path represented by e-closure transition tc. Its weight, updated in line 8, is

151

the semiring sum of such extended transitions with a given source, destination
and label.

Figure 5 illustrates the application of c-removal to weighted automata over
the tropical semiring. The example shows that the new algorithm is more general
than the classical one because e-transitions with non-zero weights are dealt with
correctly.

3 O n - D e m a n d A l g o r i t h m s

As noted earlier, most of the library's main functions have lazy implementa-
tions, meaning that their results are computed on demand, only as required by
the operations using those results. On-demand execution is very advantageous
when a large intermediate automaton is constructed in an application but only
a small part of the automaton needs to be visited for any particular input to the
application. For instance, in a speech recognizer, several weighted transducers
- - the language model, the dictionary, the context-dependent acoustic models
- - are composed into a potentially huge transducer, but only a very small part
of it is searched when processing a particular utterance.

The main precondition for a function to have a lazy implementation is that
the function be expressible as a local computation rule, in the sense that the
transitions leaving a particular state in the result be determined solely by their
source state and information from the function's arguments associated to that
state. For instance, composition has a lazy implementation, as we will see in
Section 3.1 below. Similarly, union, concatenation and Kleene closure can be
computed on demand, and so does determinization. On the other hand, algo-
rithms that require traversing an automaton both in the forward and in the
backward directions, such as the standard DFA minimization algorithm or any
algorithm based on relaxation techniques (for instance, strongly connected com-
ponents, coaccessibility, best path through single-source shortest paths methods)
do not have lazy implementations.

Fig. 7. Composition Inputs

3.1 Example: Lazy Compos i t i on

Composition generalizes acceptor intersection. States in the composition T1 o T2
of T1 and T2 are identified with pairs of a state of T1 and a state of T2. Leaving
aside transitions with e inputs or outputs for the moment, the following rule

152

® a:d =_(
(x:x)

b:e
(e2:82:

q

C:E
(e2:~2)

b:e , b:e
" ~ l) j , (e 2 : ~)

. . . . 2)

C:E
e2:e2)

)

;2 ---(gill)- x. d:a
:x)

Fig. 8. Redundant Composition Paths

Fig. 9. Composition Output

specifies how to compute a transition of T1 o T~ from appropriate transitions of
T1 and T2

ql and q2 q~) ~ (ql,q~) (ql,q~)

where s ~!Y~[' t represents a transition from s to t with input x, output y and
weight w. Clearly, this computation is local, and can thus be used in a lazy
implementation of composition.

Transitions with e labels in 7"1 or T~ add some subtleties to composition. In
general, output and input Cs can be aligned in several different ways: an output
c in T1 can be consumed either by staying in the same state in 7"2 or by pairing
it with an input e in T2; an input e in T2 can be handled similarly. For instance,
the two transducers in Figure 7 can generate all the alternative paths in Figure
8. However, the single bold path is sufficient to represent the composition result,
shown separately in Figure 9. The problem with redundant paths is not only that
they increase unnecessarily the size of the result, but also they fail to preserve
path multiplicity: each pair of compatible paths in T1 and T2 may yield several
paths in 7"1 o T2. If the weight semiring is not idempotent, that leads to a result
that does not satisfy the algebraic definition of composition:

153

el :e l

Fig. 10. Composition Filter

We solve the path-multiplicity problem by mapping the given composition
into a new composition

Tl o T2 -+ T~ o F o T~

in which F is a special filter transducer and the T[are versions of the T/in which
the relevant e labels are replaced by special "silent transition" symbols ei. The
bold path in Figure 8 is the only one allowed by the filter in Figure 10 for the
input transducers in Figure 7.

Clearly, all the operations involved in the filtered composition are local, there-
fore they can be performed on demand, without needing perform explicitly the
replacement of T/ by T[.

4 S o f t w a r e D e s i g n

Our library was designed to meet two important requirements:

1. Algorithms that operate on automata should do it only through abstract
accessor and mutator operations, which in turn operate on the internal rep-
resentations of those automata.

2. Algorithms that operate on weights should do it solely through abstract
operations that implement the weight semiring.

We motivate and describe these two requirements below. Furthermore, the de-
manding nature of our applications imposes the constraint that these abstrac-
tions add little computational burden compared to more specialized architec-
tures.

4.1 F in i t e - s t a t e O b j e c t s

Requiring algorithms to operate on automata solely through abstract accessors
and mutators has three benefits: (a) it allows the internal representation of au-
tomata to be hidden, (b) it allows generic algorithms that operate on multiple

154

finite-state representations and (c) it provides the mechanism for creating and
using on-demand implementat ions of algorithms. To illustrate these points, con-
sider the core accessors supported by all au toma ta classes in the library:

- fsm.startO, which returns the initial state of fsm;
- fsm.final(state), which returns the final weight of state in fsm;
- fsm.arcs(state), which returns an i terator over the transitions leaving state

in fsm. The i terator is itself an object support ing the n e x t operation, which
returns (a pointer to) each transition from state in turn.

A state is specified by an integer index; a transition is specified by a structure
containing an input label, an output label, a weight and a next state index. 2

Clearly, there are a variety of au toma ta implementat ions that meet this core
interface. As a simple example, the transitions leaving a state could be stored
in arrays or in linked lists. By hiding the au tomaton ' s implementat ion from its
user we gain the usual advantage - we can change the representation as we wish
and, so long as we do not change the object interface, the code that uses it still
runs.

In fact, it proves very useful to have multiple au toma ta implementat ions
in the same library. For example, one class of au tomaton in the library, which
supports muta t ing operations such as adding states and arcs, uses an extensible
vector representation of states and transitions that admits efficient appends.
Another class, which is immutable, has a fixed array of states and transitions
that admits memory-mapping from files. A third class, also immutable , stores
states and transitions in a compressed form to save space, and uncompresses
them on-demand when they are accessed.

Our algori thms are written generically, in tha t they assume that au toma ta
support the core operations above and as little else as necessary. For example,
some classes of au t om a t a support the f sm.nums ta t e s () operation, while others
do not (we will see an example in a moment) . Where possible and reasonably
efficient, we write our algorithms to avoid using such optional operations. In
this way, they will work on any automaton class. On the other hand, if it is
really necessary to use fsm.nurastates O, then at least all au tomata classes that
support that operation will work. 3 This design philosophy is similar in some
ways to other modern software toolkits such as the C ÷ + Standard Template
Library [19].

The restricted set of core operations above was mot ivated by the need to
support on-demand implementat ions of algorithms. In particular, all of those
operations are local if we accept the convention that no state should be vis-
ited tha t has not been discovered from the start state. Thus the au tomaton
object tha t lies behind this interface need not have a static representation. For

2 Using integer indices allow referring to states that may not have yet been constructed
in automata being created by on-demand algorithms.

3 For those that do not, our current C implementation will issue a run-time error,
while rtm-time type-checking can be used to circumvent such errors. In our new
C + + version, we will use compile-time type-checking where possible.

155

example, we can implement the result of the composition of two automata A
and B as a delayed composition automaton C = FSHCompose(A, B). When
C . s t a r t 0 is called, the start state can be constructed on-demand by first calling
A . s t a r t 0 and B . s t a r t 0 and then pairing these states and hashing the pair to
a new constructed state index, which C . s t a r t 0 returns. Similarly, C . f i n a t 0
and C.arcs 0 can be computed on-demand by first calling these operations on
A and B and then constructing the appropriate result for C to return. If we
had included numstates as a core operation, the composition would have to be
fully expanded immediately to count its number of states. Since a user might
do this inadvertently, we do not provide that operation for automata objects re-
sulting from composition. 4 The core operations, in fact, can support on-demand
automata with an infinite number of states, so long as only a finite portion of
such automata is traversed.

To achieve the required efficiency for the above interface, we insure that each
call to the transition iterator involves nothing more than a pointer increment for
the automata classes intended to be used in the core of demanding applications
such as speech recognition. Since most of the time operating on an automaton
in those applications is spent sequencing through the transitions leaving various
states, that is usually effective.

4.2 Weight Objec ts

As mentioned earlier, many of the algorithms in our library will work with a
variety of weight semirings. Our design encourages writing algorithms over the
most general semiring by making weights an abstract type with suitable addition
and multiplication operations and identity elements. In this way, we can switch
between, say, the tropical semiring and the probability semiring by just replacing
the weight definitions. For efficiency, these operations are represented by macros
in our C version and by inline member functions in the C++ version under
development.

5 G e n e r a l i t y

In our design, we followed two major principles: generality and minimality. Our
motivation is to provide the most general algorithms that can be useful in a
variety of applications, and to avoid duplication of code that would increase the
chance of errors and make the code harder to understand.

One of the main aspects of software engineering consists of separating data
and programs. We suggest a mathematical analogue of this principle: the sepa-
ration of algebra and algorithms. In other words, our algorithms are designed to
work in as general an algebraic structure as possible.

4 The user can always copy this on-demand automaton into an instance of a static
automata class that supports the numstates operation. In other words, we favor
explicit conversions to implicit ones.

!56

This generality is possible thanks to the algebraic concepts of rational power
series and semirings. We have already introduced semirings. Rational power
series are functions that map a free monoid to a semiring. As shown by [23],
rational power series are exactly those functions that can be represented by
weighted automata. Weighted automata are a generalization of the notion of
automaton: each transition of a weighted automaton is assigned a weight in
addition to the usual label. More formally, a weighted automaton A is a 6-
tuple A = (S , K, Q, E,)~, p) in which S is a finite alphabet, (K, @, ®, 1,0) is
a semiring, Q is a finite set of states, E C Q x Z x K x Q is a finite set of
transitions, ~ : I -+ K is the initial weight function and p : F --+ K the final
weight func t ion :

A weighted automaton is used as follows. Given an input string x, each path
from the initial state to a final state whose label sequence matches x will assign
to x the semiring product ® of the weights of the path transitions and the final
weight of the final state of the path. The total weight for the input string x is
the semiring sum ® of the weights assigned to x by all the paths matching x.

We define the morphism lab from E* to L'* x z~* by

vt = (p, x, ~, q) e E, lab(t) = (x, y)

lab(t) is the label of a transition t C E. We denote by II(i, f) the set of all paths
from a state i to f . Then, a weighted automaton A realizes the rational power
series S(A) defined by:

w ~ £ ' , (S(A), ~) = O (~,(i) ® y ® p(:))
(~,~)~l.b(~(i,y)),(i,y)~xxF

Fig. 11. Determinization over (~, +, .,0, 1).

5 For historical and practical reasons, we use single initial states rather than an initial
weight function; it's easy to see that this makes no substantive difference.

157

Most of the algorithms of our library work with arbitrary semirings or
with semirings from mathematically-defined subclasses (closed semirings, pos-
itive min-semirings). To use the library with a semiring K, we just need to give
computational representations for the elements of the semiring and for its oper-
ations. Library algorithms, for instance composition, e-removal, determinization
and minimization, will work without change over different semirings because of
their rational power series foundation.

The same power-series determinization algorithm and code [15] can be used
to determinize transducers, weighted automata encountered in speech processing
and weighted automata using the probability operations. To do so, one just needs
to use the algorithm with the string semiring (Z* U {oo}, A,., oo, e) in the case of
transducers, and with the semirings (T~, +,-, 0, 1) and (T¢+, min, +, c~, 0) in the
other cases. For example, Figure 11 shows a weighted acceptor over (T¢, +, . , 0, 1)
and its determinization.

6 C o n c l u s i o n

We presented a very general finite-state library based on the notions of semiring
and of rational power series. We were thus able to use the same code for a variety
of different applications requiring different semirings. The current version of the
library is written in C, with the semiring operations defined as macros. Our new
version is being written in C + + to take advantage of templates to support more
general transition labels and multiple semirings in a single application.

Our experience shows that it is possible and in fact sometimes easier to im-
plement efficient generic algorithms for a class of semirings than to implement
specialized algorithms for particular semirings. Similarly, lazy versions of algo-
rithms are often easier to implement than their traditional counterparts.

We tested the efficiency of our library by building competitive large-
vocabulary speech recognition applications involving very large automata (> 106
states, > 107 transitions). The library is being used in a variety of speech recog-
nition and speech synthesis projects at AT~T Labs and at Lucent Bell Labora-
tories.

R e f e r e n c e s

1. A. V. Aho, J. E. Hopcroft, and J. D. UUman. The design and analysis o] computer
algorithms. Addison Wesley: Reading, MA, 1974.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison Wesley: Reading, MA, 1986.

3. J. Berstel and C. Reutenauer. Rational Series and Their Languages. Springer-
Verlag: Berlin-New York, 1988.

4. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press: Cambridge, MA, 1992.

5. K. Culik II and J. Karl. Digital images and formal languages. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, pages 599-616. Springer,
1997.

158

6. S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
1974-1976.

7. R. M. Kaplan and M. Kay. Regular models of phonological rule systems. Compu-
tational Linguistics, 20(3), 1994.

8. L. Karttunen. The replace operator, in 33rd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 16-23. Association for Computational
Linguistics, 1995. Distributed by Morgan Kaufmann Publishers, San Francisco,
California.

9. W. Kuich and A. Salomaa. Semirings, Automata, Languages. Number 5 in EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, Germany,
1986.

10. K.-F. Lee. Context dependent phonetic hidden Markov models for continuous
speech recognition. IEEE Trans. ASSP, 38(4):599-609, Apr. 1990.

11. A. Ljolje and M. D. Riley. Optimal speech recognition using phone recognition
and lexical access. In Proceedings of ICSLP, pages 313-316, Banff, Canada, Oct.
1992.

12. M. Mohri. Minimization of sequential transducers. Lecture Notes in Computer
Science, 807, 1994.

13. M. Mob_ft. Syntactic analysis by local grammars automata: an efficient algorithm.
In Proceedings of the International Conference on Computational Lexicography
(COMPLEX 94). Linguistic Institute, Hungarian Academy of Science: Budapest,
Hungary, 1994.

14. M. Mohri. On some applications of finite-state automata theory to natural language
processing. Journal of Natural Language Engineering, 2:1-20~ 1996.

15. M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23, 1997.

16. M. Mohri. A general framework for shortest distance problems, 1997. In prepara-
tion.

17. M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata in text and speech
processing. In ECAI-96 Workshop, Budapest, Hungary. ECAI, 1996.

18. M. Mohri and R. Sproat. An efficient compiler for weighted rewrite miles. In 34th
Meeting of the Association for Computational Linguistic s (A CL 96), Proceedings
of the Conference, Santa Cruz, California. ACL, 1996.

19. D. Mussel" and A. Saini. STL Tutorial and Reference Guide. Addison-Wesley, 1996.
20. D. Revuz. Minimisation of acycfic deterministic automata in linear time. Theoret-

ical Computer Science, 92:181-189, 1992.
21. G. Riccardi, E. Bocchieri, and R. Pieraccini. Non-deterministic stochastic language

models for speech recognition. In Proceedings IEE International Conference on
Acoustics, Speech and Signal Processing, volume 1, pages 237-240. IEEE, 1995.

22. E. Ristad and P. Yianilos. Finite growth models. Technical report CS-TR-533-96,
Department of Computer Science, Princeton University, 1996.

23. M. P. Sch/itzenberger. On the definition of a family of automata. Information and
Control, 4, 1961.

24. I. Simon. Limited subsets of a free monoid. In Proceedings of the I9th Annual
Symposium on Foundation of Computer Science, pages 143-150, 1978.

25. R. Sproat, C. Shih, W. Gale, and N. Chang. A stochastic finite-state word-
segmentation algorithm for Chinese. In 32nd Annual Meeting of the Association
for Computational Linguistics, pages 66-73~ San Francisco, California, 1994, New
Mexico State University, Las Cruces, New Mexico, Morgan Kaufmann.

