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1 O v e r v i e w  

We describe the design principles and main algorithms for an object-oriented 
library for weighted finite-state transducers, which are finite automata in which 
each transition has an output and a weight as well as the more familiar input. 
The main goal of the library is to provide algorithms and representations for 
all the symbolic processing components (language models, dictionaries, acoustic 
realization rules, word lattices) in large-vocabulary speech recognition systems. 
This goal leads to several requirements: generality, to support the representa- 
tion and use of the various information sources in speech recognition; modularity, 
to allow rapid experimentation with different representations of speech recogni- 
tion tasks; and efficiency, to support competitive large-vocabulary recognition. 
Rational power series provide the theoretical foundation for the library by giv- 
ing the semantics for the objects and operations in the library and by creat- 
ing the opportunity for optimizations (on-demand composition, determinization 
and minimization) that are not available in more "ad hoc" speech recognition 
frameworks. The generality of the library has made it also valuable in other 
language-processing applications, such as word segmentation for Chinese text 
[25]. 

1.1 Design Rationale  

Current speech-recognition systems rely on a variety of probabilistic finite-state 
models, for instance n-gram language models [21], multiple-pronunciation dictio- 
naries [11], and context-dependent acoustic models [10]. However, most speech 
recognizers do not take advantage of the shared properties of the information 
sources they use. Instead, they rely on special-purpose algorithms for specific 
representations. That means that the recognizer has to be rewritten if repre- 
sentations are changed for a new application or for increased accuracy or per- 
formance. Experiments with different representations are therefore difficult, as 
they require changing or even completely replacing fairly intricate recognition 
programs. This situation is not too different from that in programming-language 
parsing before lex  and yacc [2]. Furthermore, specialized representations and 
algorithms preclude certain global optimizations based on the general proper- 
ties of finite-state models. Again, the situation is similar to the lack of general 
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methods in programming-language parsing before the development of the the- 
ory of deterministic context-free languages and of general grammar optimization 
techniques based on it. 

In some other areas of language processing, especially dictionaries, morphol- 
ogy and local parsing, finite-state techniques have been used with great success 
[7,13]. Complex finite-state mappings between strings can be represented with 
regular expressions over elementary transductions (input-output mappings) to- 
gether with relational composition of transductions. Convenient notation extend- 
ing regular expressions with composition and useful derived forms have also been 
developed [8]. It might thus be thought that those finite-state tools would apply 
directly to the problem of specifying and combining the multiple information 
sources used in a speech recognizer. However, in speech recognition it is essen- 
tial that alternative ways of generating or transforming a string be weighted by 
the likelihood of that generation or transformation. That is, instead of languages 
and transductions we have to work with weighted languages and weighted trans- 
ductions, and thus with finite automata with weighted transitions. 1 Weighted 
languages are just formal power series over appropriate semirings, and weighted 
transductions can be interpreted in a similar way [23, 6, 9, 3]. We were thus led to 
develop a library supporting the representation and use of weighted finite-state 
representations of speech-recognition models. Using the library, each weighted 
language or transduction is represented as an appropriate weighted acceptor or 
transducer, and model combination is done by calls to library functions. 

The adjective "rational" in the title of this paper is used ambiguously to 
refer both to the use of the theory of rationM power series as a foundation for 
the library, and to the design approach, in which each object and function has 
a well-defined mathematical semantics. At the level of the rational operations 
and composition, the library is compositional - -  the meaning as a language or 
transduction of the result of a function application depends only on the mean- 
ings of the function's arguments. Other functions in the library depend on or 
manipulate representations - -  weighted automata - -  but they are compositional 
at the automata level, in that they operate uniformly on any automata objects 
providing suitable accessor and mutator methods. 

Algorithms on weighted automata have strong similarities with their better- 
known unweighted counterparts, but the proper treatment of weights introduces 
various subtleties that we shall describe later. Furthermore, the size of symbol 
sets and automata arising in large-vocabulary recognition require careful imple- 
mentation techniques even for standard algorithms. For example, iterating over 
the symbol set in the standard DFA minimization algorithm [1] is impractical 
for sparse DFAs if the symbol set is large, as is the case in language models for 
large-vocabulary recognition. 

7 Weighted acceptors and transducers have also been used in image processing [5]. 
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1.2 Coverage  

The library operates on weighted transducers; weighted acceptors are represented 
as restrictions of the identity transducer to the support of the acceptor. In our 
chosen representation, weighted automata have a single initial state; whether 
a state is accepting or not is determined by the state's accepting weight. The 
library includes: 

Ra t iona l  opera t ions :  union, concatenation, Kleene closure, reversal, inversion 
and projection; 

Compos i t ion :  transducer composition [17], and acceptor intersection, as well 
as taking the difference between a weighted acceptor and an unweighted 
DFA; 

Equivalence t r ans format ions :  e-elimination, determinization [14,15] and 
minimization for unweighted (both the general case [1] and the more efficient 
acyclic case [20]) and weighted acceptors and transducers [12, 15], removal 
of inaccessible states and transitions; 

Search: best path, n-best paths, pruning (remove all states and transitions 
that occur only on paths of weight greater by a given threshold than the 
best path); 

R e p r e s e n t a t i o n  and  s torage  managemen t :  create and convert among au- 
tomata representations with different performance tradeoffs; also, as we will 
discuss later, many of the library functions can have their effects delayed 
for on-demand execution, and functions are provided to cache and force de- 
layed objects, inspired by" similar functions for lazy evaluation in functional 
programming languages. 

In addition, a comprehensive set of support functions is provided to manipulate 
the internal representations of automata (for instance, topological sorting), for 
converting between internal and external representations, including graphical 
ones, and for accessing and mutating the components of an automaton (states, 
transitions, initial state and accepting weights). 

For convenient experimentation, each of the library's main functions has 
a Unix shell-level counterpart that operates between external automata repre- 
sentations, allowing the expression of complex operations on automata as shell 
pipelines. The example that follows is presented in terms of those commands for 
simplicity. 

1.3 Simple Example: Alignment 

As a simple example of the use of the library, we show how to find the best 
alignment between two strings using a weighted edit distance, which can be ap- 
plied for instance to finding the best alignment between the dictionary phonetic 
transcription of a word string and the acoustic (phone) realization of the same 
word string. Figure 2 shows a domain-dependent table of insertion, deletion 
and substitution weights between phonemes and phones. In a real application, 
those weights would be derived automatically from aligned examples using a 
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Baseform Phone i Weights Type 
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d e 2 deletion 
e pr 1 insertion 

Fig .  2. Weighted Edit Distance 



148 

suitable machine-learning method [11,22]. The minimum edit distance between 
two strings can be simply defined by the recurrences 

d(a°,b °) = 0 

d~(ai, b j) = d(ai-1, b j - l )  + w(ai,bj) (substitution) 
dd(a i ,bJ)= d(a~-l,b j) + w(ai,e) (deletion) 
di(ai,b j) = d(ai ,b j - l )  + w(e, bj) (insertion) 

d(a i, bJ) = min{d~(a i, b j) + dd(a i, bJ) + di(a i, bJ)} 

AJ~a 

T . m  

@ ae:eh/1 ( ~ n : n / 0 @  d:eps/3 . @  

c.f~l 

Fig. 3. Alignment Automata 

The possible one symbol edits (insertion, deletion or substitution) and their 
weights can be readily represented by a one-state weighted transducer. If the 
transducer is in file T . f s t  and the strings to be aligned are represented by 
acceptors 1. f s a  and B. fsa,  the best alignment is computed simply by the shell 
command 

fsmcompose A.fsa T.fst B.fsa I fsmbestpath >C.fst 

Abbreviated examples of the inputs and outputs to this command are shown in 
Figure 3. 

The correctness of this implementation of minimum edit distance alignment 
depends on the use of suitable weight combination rules in automata composi- 
tion, specifically those of the tropical semiring [24], which will be discussed more 
fully in the next section. 

Alignment by transduetion can be readily extended to situations in which 
edits involve longer strings or are context-dependent, as those shown in Figure 
4. In such cases, states in the edit transducer encode appropriate context con- 
ditions. Furthermore, a set of weighted edit rules like those in Figure 4 can be 
directly compiled into an appropriate weighted transducer [18]. 
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Baseform(s)! Phone(s) Weights Type 
ai bj w(a .  bj) 
p pcl pr 1 expansion 

eh m em 3 contraction 
r eh ax r 2 transposition 

t / V  r V dx ~ 0 context-dependency 

Fig. 4. Generalized Weighted Edit Distance 

2 Weighted Algorithms 

Although algorithms for weighted automata  are closely related to their better- 
known unweighted counterparts, they differ in crucial details. 

One of the important  features of our finite-state library is that  most of its 
algorithms operate on general weighted au tomata  and transducers. We shall out- 
line later the mathematical  foundation for weighted automata,  and how it allows 
us to write general algorithms that  are independent of the underlying algebra. 
For the moment,  we note that  weights may not be numbers, but they may in- 
stead be strings, sets, or even regular expressions. In each case, the additive 
and multiplicative operations • and ® on weights need to be chosen to form 
a semiring: • must be commutative with a neutral element 0, ® must have a 
neutral element 1, ® must distribute on the left and on the right with respect 
to G, and 0 ® a = a ® 0 = 0. For some algorithms the semiring must be commu-  
tative, meaning that  @ is commutative.  Finally, some algorithms require closed 
semirings, in which infinite addition is defined and behaves as finite addition 
with respect to multiplication. 

Shortest-paths algorithms play an essential role in applications, being used 
to find the "best" solution in the set of possible solutions represented by an 
automaton (for instance, the best string alignment or the best recognition hy- 
pothesis), as we saw in the alignment example given earlier. Since the general 
framework for solving all pairs shortest-paths problems - -  closed semirings - -  is 
compatible with the abstract notion of weights we use, we were able to include 
an efficient version of that generic algorithm [1,4] in our library. Using the same 
algorithm and code, we can provide the all-pairs shortest distances when weights 
are real numbers representing, for example, probabilities, but also when they are 
strings or regular expressions. This last case is useful to generate efficiently a 
regular expression equivalent to a given automaton.  

In a similar way we defined a general framework for single-source shortest- 
paths algorithms based on semirings that  leads to a generic algorithm [16]. This 
generic algorithm computes the single-source shortest distance when weights 
are numbers, strings, or subsets of a set. These different cases are useful in 
computing minimal deterministic weighted automata .  In most speech-processing 
applications, the appropriate weight algebra is the tropical semiring.  Weights are 
positive real numbers, representing negative logarithms of probabilities. Weights 
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gr~e~4 

Fig. 5. Weighted automaton and its e-removal 

along a path are added; when several paths correspond to the same string, the 
weight of the string is the minimum of the weights of those paths. 

2.1 E x a m p l e :  e R e m o v a l  

2 3//o 4- M~I,v_{~ } 
3 G~ 4- CLOSURE(Me) 
4 for p 4- 1 to IVt 
5 do for each te E TransG~ [iv] 
6 do for each ti E TransMi [Next(t~)] A l(ti) • e 
7 do to 4- FINDTRANS(/(ti), Next(t/), TransMo [p]) 

Fig. 6. Pseudocode of the general e-removal algorithm. 

Figure 6 shows the pseudocode of a generic e-removal algorithm for weighted 
automata.  Given a weighted automaton Mi, the algorithm returns an equiva- 
lent weighted automaton Mo without e-transitions. TransM[s] denotes the set 
of transitions leaving state s in automaton M~ Next(t) denotes the destination 
state of transition t, l(t) denotes its label, and A(t) its weight. Lines 1 and 2 
extract from M~ the subautomaton Me containing all e transitions in Mi and 
the subautomaton Mo containing all the non-e transitions. Line 3 applies the 
general all-pairs shortest distance algorithm CLOSURE to Mr to derive the e- 
closure Gc. The nested loops starting in lines 4, 5 and 6 iterate over all pairs of 
an e-closure transition t~ and a non-e transition ¢i such that  the destination of 
te is the source of t~. Line 7 looks in Mo for a transition to with label I(ti) from 
tE's source from ti 's  destination if it exists, or creates a new one with weight 0 
if it does not. This transition is the result of extending ti "backwards" with the 
Mi e-path represented by e-closure transition tc. Its weight, updated in line 8, is 
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the semiring sum of such extended transitions with a given source, destination 
and label. 

Figure 5 illustrates the application of c-removal to weighted automata over 
the tropical semiring. The example shows that the new algorithm is more general 
than the classical one because e-transitions with non-zero weights are dealt with 
correctly. 

3 O n - D e m a n d  A l g o r i t h m s  

As noted earlier, most of the library's main functions have lazy implementa- 
tions, meaning that their results are computed on demand, only as required by 
the operations using those results. On-demand execution is very advantageous 
when a large intermediate automaton is constructed in an application but only 
a small part of the automaton needs to be visited for any particular input to the 
application. For instance, in a speech recognizer, several weighted transducers 
- -  the language model, the dictionary, the context-dependent acoustic models 
- -  are composed into a potentially huge transducer, but only a very small part 
of it is searched when processing a particular utterance. 

The main precondition for a function to have a lazy implementation is that 
the function be expressible as a local computation rule, in the sense that the 
transitions leaving a particular state in the result be determined solely by their 
source state and information from the function's arguments associated to that 
state. For instance, composition has a lazy implementation, as we will see in 
Section 3.1 below. Similarly, union, concatenation and Kleene closure can be 
computed on demand, and so does determinization. On the other hand, algo- 
rithms that require traversing an automaton both in the forward and in the 
backward directions, such as the standard DFA minimization algorithm or any 
algorithm based on relaxation techniques (for instance, strongly connected com- 
ponents, coaccessibility, best path through single-source shortest paths methods) 
do not have lazy implementations. 

Fig. 7. Composition Inputs 

3.1 Example:  Lazy Compos i t i on  

Composition generalizes acceptor intersection. States in the composition T1 o T2 
of T1 and T2 are identified with pairs of a state of T1 and a state of T2. Leaving 
aside transitions with e inputs or outputs for the moment, the following rule 
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Fig. 8. Redundant Composition Paths 

Fig. 9. Composition Output 

specifies how to compute a transition of T1 o T~ from appropriate transitions of 
T1 and T2 

ql and q2 q~) ~ (ql,q~) (ql,q~) 

where s ~!Y~[' t represents a transition from s to t with input x, output y and 
weight w. Clearly, this computation is local, and can thus be used in a lazy 
implementation of composition. 

Transitions with e labels in 7"1 or T~ add some subtleties to composition. In 
general, output and input Cs can be aligned in several different ways: an output 
c in T1 can be consumed either by staying in the same state in 7"2 or by pairing 
it with an input e in T2; an input e in T2 can be handled similarly. For instance, 
the two transducers in Figure 7 can generate all the alternative paths in Figure 
8. However, the single bold path is sufficient to represent the composition result, 
shown separately in Figure 9. The problem with redundant paths is not only that 
they increase unnecessarily the size of the result, but also they fail to preserve 
path multiplicity: each pair of compatible paths in T1 and T2 may yield several 
paths in 7"1 o T2. If the weight semiring is not idempotent, that leads to a result 
that does not satisfy the algebraic definition of composition: 
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el :e l  

Fig. 10. Composition Filter 

We solve the path-multiplicity problem by mapping the given composition 
into a new composition 

Tl o T2 -+ T~ o F o T~ 

in which F is a special filter transducer and the T[ are versions of the T/in which 
the relevant e labels are replaced by special "silent transition" symbols ei. The 
bold path in Figure 8 is the only one allowed by the filter in Figure 10 for the 
input transducers in Figure 7. 

Clearly, all the operations involved in the filtered composition are local, there- 
fore they can be performed on demand, without needing perform explicitly the 
replacement of T/ by T[. 

4 S o f t w a r e  D e s i g n  

Our library was designed to meet two important requirements: 

1. Algorithms that operate on automata should do it only through abstract 
accessor and mutator operations, which in turn operate on the internal rep- 
resentations of those automata. 

2. Algorithms that operate on weights should do it solely through abstract 
operations that implement the weight semiring. 

We motivate and describe these two requirements below. Furthermore, the de- 
manding nature of our applications imposes the constraint that these abstrac- 
tions add little computational burden compared to more specialized architec- 
tures. 

4.1 F in i t e - s t a t e  O b j e c t s  

Requiring algorithms to operate on automata solely through abstract accessors 
and mutators has three benefits: (a) it allows the internal representation of au- 
tomata to be hidden, (b) it allows generic algorithms that operate on multiple 
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finite-state representations and (c) it provides the mechanism for creating and 
using on-demand implementat ions of algorithms. To illustrate these points, con- 
sider the core accessors supported by all au toma ta  classes in the library: 

- fsm.startO, which returns the initial state of fsm; 
- fsm.final(state), which returns the final weight of state in fsm; 
- fsm.arcs(state), which returns an i terator over the transitions leaving state 

in fsm. The i terator  is itself an object support ing the n e x t  operation, which 
returns (a pointer to) each transition from state in turn. 

A state is specified by an integer index; a transition is specified by a structure 
containing an input label, an output  label, a weight and a next state index. 2 

Clearly, there are a variety of au toma ta  implementat ions that  meet this core 
interface. As a simple example, the transitions leaving a state could be stored 
in arrays or in linked lists. By hiding the au tomaton ' s  implementat ion from its 
user we gain the usual advantage - we can change the representation as we wish 
and, so long as we do not change the object interface, the code that  uses it still 
runs. 

In fact, it proves very useful to have multiple au toma ta  implementat ions 
in the same library. For example, one class of au tomaton  in the library, which 
supports muta t ing  operations such as adding states and arcs, uses an extensible 
vector representation of states and transitions that  admits  efficient appends. 
Another class, which is immutable,  has a fixed array of states and transitions 
that  admits  memory-mapping  from files. A third class, also immutable ,  stores 
states and transitions in a compressed form to save space, and uncompresses 
them on-demand when they are accessed. 

Our algori thms are written generically, in tha t  they assume that  au toma ta  
support  the core operations above and as little else as necessary. For example,  
some classes of au t om a t a  support  the f sm.nums ta t e s ( )  operation, while others 
do not (we will see an example in a moment) .  Where possible and reasonably 
efficient, we write our algorithms to avoid using such optional operations. In 
this way, they will work on any automaton class. On the other hand, if it is 
really necessary to use fsm.nurastates O, then at least all au tomata  classes that  
support  that  operation will work. 3 This design philosophy is similar in some 
ways to other modern software toolkits such as the C ÷ +  Standard Template  
Library [19]. 

The restricted set of core operations above was mot ivated by the need to 
support  on-demand implementat ions of  algorithms. In particular, all of those 
operations are local if we accept the convention that  no state should be vis- 
ited tha t  has not been discovered from the start  state. Thus the au tomaton  
object tha t  lies behind this interface need not have a static representation. For 

2 Using integer indices allow referring to states that may not have yet been constructed 
in automata being created by on-demand algorithms. 

3 For those that do not, our current C implementation will issue a run-time error, 
while rtm-time type-checking can be used to circumvent such errors. In our new 
C + +  version, we will use compile-time type-checking where possible. 
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example, we can implement the result of the composition of two automata A 
and B as a delayed composition automaton C = FSHCompose(A, B). When 
C . s t a r t  0 is called, the start state can be constructed on-demand by first calling 
A . s t a r t  0 and B . s t a r t  0 and then pairing these states and hashing the pair to 
a new constructed state index, which C . s t a r t  0 returns. Similarly, C . f i n a t  0 
and C.arcs 0 can be computed on-demand by first calling these operations on 
A and B and then constructing the appropriate result for C to return. If we 
had included numstates as a core operation, the composition would have to be 
fully expanded immediately to count its number of states. Since a user might 
do this inadvertently, we do not provide that operation for automata objects re- 
sulting from composition. 4 The core operations, in fact, can support on-demand 
automata with an infinite number of states, so long as only a finite portion of 
such automata is traversed. 

To achieve the required efficiency for the above interface, we insure that each 
call to the transition iterator involves nothing more than a pointer increment for 
the automata classes intended to be used in the core of demanding applications 
such as speech recognition. Since most of the time operating on an automaton 
in those applications is spent sequencing through the transitions leaving various 
states, that is usually effective. 

4.2 Weight  Objec ts  

As mentioned earlier, many of the algorithms in our library will work with a 
variety of weight semirings. Our design encourages writing algorithms over the 
most general semiring by making weights an abstract type with suitable addition 
and multiplication operations and identity elements. In this way, we can switch 
between, say, the tropical semiring and the probability semiring by just replacing 
the weight definitions. For efficiency, these operations are represented by macros 
in our C version and by inline member functions in the C++ version under 
development. 

5 G e n e r a l i t y  

In our design, we followed two major principles: generality and minimality. Our 
motivation is to provide the most general algorithms that can be useful in a 
variety of applications, and to avoid duplication of code that would increase the 
chance of errors and make the code harder to understand. 

One of the main aspects of software engineering consists of separating data 
and programs. We suggest a mathematical analogue of this principle: the sepa- 
ration of algebra and algorithms. In other words, our algorithms are designed to 
work in as general an algebraic structure as possible. 

4 The user can always copy this on-demand automaton into an instance of a static 
automata class that supports the numstates operation. In other words, we favor 
explicit conversions to implicit ones. 
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This generality is possible thanks to the algebraic concepts of rational power 
series and semirings. We have already introduced semirings. Rational power 
series are functions that  map a free monoid to a semiring. As shown by [23], 
rational power series are exactly those functions that  can be represented by 
weighted automata.  Weighted automata  are a generalization of the notion of 
automaton: each transition of a weighted automaton is assigned a weight in 
addition to the usual label. More formally, a weighted automaton A is a 6- 
tuple A = (S ,  K, Q, E,  )~, p) in which S is a finite alphabet, (K, @, ®, 1,0) is 
a semiring, Q is a finite set of states, E C Q x Z x K x Q is a finite set of 
transitions, ~ : I -+ K is the initial weight function and p : F --+ K the final 
weight func t ion :  

A weighted automaton is used as follows. Given an input string x, each path 
from the initial state to a final state whose label sequence matches x will assign 
to x the semiring product ® of the weights of the path transitions and the final 
weight of the final state of the path. The total weight for the input string x is 
the semiring sum ® of the weights assigned to x by all the paths matching x. 

We define the morphism lab from E* to L'* x z~* by 

vt = (p, x, ~, q) e E,  lab(t) = (x, y) 

lab(t) is the label of a transition t C E. We denote by II(i, f )  the set of all paths 
from a state i to f .  Then, a weighted automaton A realizes the rational power 
series S(A) defined by: 

w ~ £ ' ,  (S(A), ~) = O (~,(i) ® y ® p(:)) 
(~,~)~l.b(~(i,y)),(i,y)~xxF 

Fig. 11. Determinization over (~, +, .,0, 1). 

5 For historical and practical reasons, we use single initial states rather than an initial 
weight function; it's easy to see that this makes no substantive difference. 
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Most of the algorithms of our library work with arbitrary semirings or 
with semirings from mathematically-defined subclasses (closed semirings, pos- 
itive min-semirings). To use the library with a semiring K, we just need to give 
computational representations for the elements of the semiring and for its oper- 
ations. Library algorithms, for instance composition, e-removal, determinization 
and minimization, will work without change over different semirings because of 
their rational power series foundation. 

The same power-series determinization algorithm and code [15] can be used 
to determinize transducers, weighted automata encountered in speech processing 
and weighted automata using the probability operations. To do so, one just needs 
to use the algorithm with the string semiring (Z* U {oo}, A,., oo, e) in the case of 
transducers, and with the semirings (T~, +,-, 0, 1) and (T¢+, min, +, c~, 0) in the 
other cases. For example, Figure 11 shows a weighted acceptor over (T¢, +, . ,  0, 1) 
and its determinization. 

6 C o n c l u s i o n  

We presented a very general finite-state library based on the notions of semiring 
and of rational power series. We were thus able to use the same code for a variety 
of different applications requiring different semirings. The current version of the 
library is written in C, with the semiring operations defined as macros. Our new 
version is being written in C + +  to take advantage of templates to support more 
general transition labels and multiple semirings in a single application. 

Our experience shows that it is possible and in fact sometimes easier to im- 
plement efficient generic algorithms for a class of semirings than to implement 
specialized algorithms for particular semirings. Similarly, lazy versions of algo- 
rithms are often easier to implement than their traditional counterparts. 

We tested the efficiency of our library by building competitive large- 
vocabulary speech recognition applications involving very large automata (> 106 
states, > 107 transitions). The library is being used in a variety of speech recog- 
nition and speech synthesis projects at AT~T Labs and at Lucent Bell Labora- 
tories. 
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